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Adapting Shape in Dynamic Environments
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ABSTRACT: The performance requirements of advanced space systems of the future have
motivated a new approach to structural design. This paper surveys the field of adaprive
strucnres and propuses a general framework for categorizing the various approaches be
ing pursucd. Examples are described in cuch category 1o place the work in relative per-
spective and (o describe the similarities and differences hetween the approaches

INTRODUCTION

HE PERFORMANCE REQUIRED of future precisi ace structures has moti

vated a new approach o structural design, whes back control principles
and advances in sensors and actuators are applied to the design of high perfor-
mance structural system. This paper is an overview of research into such adup-
rive structures. General nomenclature will be defined 1o assist in categorizing the
many aspects and approaches to controlling structures for space applications.
Later sections will expand on the work in each category, and discuss the relation-
ship between the approaches being taken by several teams of investigators in the
United States, Europe. and Japan. The authors take responsibility for any work
inadvertently omitted from this averview.

A general framework is proposed in Figure 1. which embraces a broad context
of structural control approaches. The two mest basic categories are the sensory
structures, those which possess sensors that enable the determination or monitor-
ing of system stales or characteristics, and the adaptive structures, those which
possess actuators that enable the alteration of system states or characteristics in
a controlled manner. A sensory system may possess sensors for health monitor-
ing. hut possess no actuators. Conversely, an adaptive system may possess actua-
tors for a controlled deployment, but have no sensors.

The intersections of sensory and adaptive structures are the controiled struc-
tures, those with both sensors and actuators in a feedback architecture for the
purpose of actively controlling system states or characteristics. It is somewhat
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Shape adaptation technologies

Articulated structures High strain composites Tensioned-membranes

Image Source: NASA

Image Source: @ -

Sanford et al, SSDM, Hlageiabeeey

AIAA 2010-2698, 2010
t~0.15mm

Fiberreinforced
polymer (FRP)

https://www.nustar.caltech.edy/page/mast

High precision Low mass
High stiffness Efficient stowage
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Smart Material Actuators
Shape memory alloys (SMAs)

Hold Down and Release Mechanisms

0

N\

https://ebad.com/products/tini-frangibolt/

https://www.youtube.com/watch?v=QZVv-OTibc4

Mars Pathfinder: Materials Adherence SMA wheels

Experiment

return spiing

\rsstrainl/guide

channel

rolating arm
in rest
position

cover glass
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solar cell

Landis and Jacobs, IEEE Photovoltaic Specialists Conference, 1997. https://www.nasa.gov/centers-and-facilities/glenn/nasa-
sets-sights-on-mars-terrain-with-revolutionary-tire-tech/
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Piezoelectric materials

Applied Induced
mechanical 1 mechanical
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https://www.sintef.no/en/expert-list/sintef-industry/materials-and-
nanotechnology/piezoelectric-materials-for-sensors-actuators-and-
ultrasound-transducers/

Active figure correction  Vibration control in
in mirrors truss structures

Bradford et al., 54" SSDM Conference, Fanson et al., 30" SSDM Conference,
AIAA 2013-1525, 2013. 1989.



Applications: Robotic Arms

Motor driven rigid links

Canadarm2

Servicing the International
Space Station (ISS) since 2001

400 km
above Earth)

‘ 1,497 kg
Length:
17m

Latching End
Effector (LEE)

Image Source: CSA

ROBOTIC ARM
Image Source: NASA
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Flexible robotic arms
oo :o: .&H ]

Fuller and Sheerin, 38t Small Satellite Conference, 2024.

Polymer membrane with
SMA lacing

Functionalities enabled by shape change:
« Reach and manipulation

» Debris capture

* On-orbit servicing



Robotic Arm for Spacecraft Inspection

Inspection arm

[112] @ 2121 D (222] &

Stable State 1 _ Hinge 1
Hinge |

| Hinge 2f

Hinge 2f 1

Hinge 3

Hinge 3 .

Debris removal
satellite

Metric Hinge 1 Hinge 2 Hinge 3
Actuator SMa  Stable State 2 Actuation Angle 40 75 114
[deg]
Fundamental 7.7 38.4 25.5
Bistable composite frequency [Hz]
tape springs
Energy Barrier [mJ] 32 168 260

Antagonist SMA

Vogel et al. Materials & Design 244, 113154, 2024
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Applications: Multi-modal Robotic Locomotion

Exobiology Extant Life Surveyor (EELS)

'ARTIST'S CONCEPT

https://www.jpl.nasa.gov/robotics-at-jpl/eels/ Usevitch et al. Science Robotics 5, eaaz0492, 2020.
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Multi-stable Metamaterials for Robotic Locomotion

Number of stable states for n X n surface:

Unit cell Periodic extensions Many more stable states

Number of Stable States

1.2 3 4 5 6 7 8 9 10
n

Risso et al., Advanced Science 9(26), 2022
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Applications: Morphing Antennas

Precise surface control using actuator arrays

—

Datashvili et al., ESA antenna workshop, 2010. Fang et al., 12" AIAA Gossamer

Systems Forum, 2011.

Functionalities enabled by shape change:
* Mass reduction using less precise active structures

 Correction for environmental disturbances

» Adaptive ground coverage
« Adaptive RF performance (e.g., operating frequency,
polarization, radiation pattern)
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Large shape reconfiguration
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Al Jamal et al., IEEE Transactions on
Microwave Theory and Techniques 73(1),
2025

Electronic only:
+41 deg steering

Mechanical + electronic:
full 360 deg steering
polarization reconfiguration




Compliant Mechanisms for Morphing Antennas

Actuation Side View
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Sakovsky et al., Advanced Science 10(6), 2023

Metric Value State-of-the-art

~50 g for CubeSat patch with similar

|20 | Mass 204 g operating frequency
N X
150 A 150
o change 19% 15 -30%

Bichara et al. Nature Communications 14(1), 8511, 2023.
Schmidt and Sakovsky, AIAA Joumal, 2025.
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Low SWaP

Tradeoffs!

* Tradeoffs between dimensional

stability, deformability, and low Q
size, weight, and power (SWaP) s{,}% ADAPTIVE
- Space structures must also N SPACE
) STRUCTURES

operate in harsh space
environments Dimensional

iy : _ Reconfiguration
stability Conventional mechanisms

Adaptation adds complexity -
mechanical systems still seen as

hlgh rISk Spacecraft failures bv tvpe Deployables Anomalies by Severity
* What are appropriate V&V P yyp 2
procedures? . B Eectica "
 How to make adaptive structures Mechanical | § : ™ Catastrophic
resilient to failure? 8 45% Software £ = Subsanl
1 H EE Unknown 5] ealiaible
- Increased flight testing and £ Ui
metrology ;
-

Tafazoli, Acta Astronautica 64, 195 — 205, 2009.
Rivera and Stewart,19" European Space Mechanisms and

Tribology Symposiums, 2021.
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Decision making in unknown environments

* How should we design an adaptive structure for unknown environments?

» Adaptive metamaterials with many degrees of freedom provide broad adaptation

» We propose bio-inspired learning approaches where structures iterative adapt properties
based on interactions with the environment
soft state

£

stiff state

150

Axial Force (N)

150, R E—
Chen et al., arXiv:2510.06442, 2025. Length change (mm)
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Chen et al., arXiv:2510.06442, 2025.
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Key Takeaways

 Structural geometry a powerful tool to adapt functionality — a lot of progress made in
demonstrating adaptive hardware but little flight testing

« Hardware adaptation can achieve performance not possible through software alone — e.g.,
multi-modal locomotion, antenna performance adaptation

* Remaining challenges:
« ldentifying ‘pull’ for adaptive structures technology
« Mitigating risk
» Operation in highly unknown environments
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